```
16.08.2019
```

1. The test is of 2 hours duration and consist of 180 questions. Each question carries 4 marks. For each correct response the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total score. The maximum marks are 720. 2. Use Blue / Black ball point pen only for writing particulars on this page/ marking responses. 3. Rough work is to be done on the paper provided. 4. The candidates should ensure that the Answer Sheet is not folded. Do not make any stay marks on the Answer Sheet. 5. Use of white fluid for correction is not permissible on the Answer Sheet. 1. When a current flows in a conductor, the order of magnitude of drift velocity of electrons through it is a) 10^{-2} cm/s b) 10⁻⁷ cm/s c) 10^4 mm/s d) 0.5 mm/s2. A conductor of certain resistance R is gradually elongated by applying a stretching force. Its resistance (R) versus length / graph will be _____ a) R. b) R c) R d) R 3. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom is b) 1:-1 a) 2:-1 c) 1:1 d) 1:-2 4. What height from the surface of the earth the gravitation potential and the value of g are -5.4x10⁷ JKg⁻² and 6ms⁻² respectively? Take the radius of earth as 6400 km. a) 1400 km b) 2600 km c) 1600 km d) 2000 km 5. Out of the following options which one can be used to produce a propagating electromagnetic wave? a) A charge moving at constant velocity b) A stationary charge c) A chargeless particle d) An accelerating charge 6. The capacitance of parallel plate capacitor increase from $5 \,\mu\text{F}$ to $60 \,\mu\text{F}$. When a dielectric is filled between its plates. The dielectric constant of the dielectric is a) 65 b) 12 c) 55 d) 10 7. Two small spheres each carrying 'q' placed 'r' metres apart repel each other with a force F. If one of the spheres is taken around the another one in a circular path of radius r, the work done will be c) $\frac{F}{2 \pi r}$ a) F x r b) F x $2\pi r$ d) zero 8. A refrigerator works between 4°c and 30°c. It is required to remove 600 calories of heat every second in order to keep the temperature of the refrigerated space constant. The power required is: (Take 1cal=4.2 Joules) b) 236.5 W a) 2.365W c) 23.65 W d) 2365 W 9. The efficiency of an ideal heat engine working between the freezing point and boiling point of water is a) 6.25% b) 26.8% c) 28% d) 12.5% 10. The mass of a lift is 2000kg. When the tension in the supporting cable is 28000N, then its acceleration is ____ a) 30ms⁻² downward b) 4ms⁻² upwards c) 4ms⁻² downwards d) 14ms⁻² upwards 11. The elastic limit of brass is $3.5 \ge 10^{10}$ Nm⁻². Find the maximum load that can be applied to a brass wire of 0.75mm diameter without exceeding the elastic limit ____ b) 5.15 x 10⁴ N c) 1.55 x 10⁴ N d) 0.55 x 10⁴ N a) 4.12 x 10⁴N 12. An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is 50cm. The next larger length of the column resonating with the same tuning fork is

a) 66.7 cm b) 150 cm c) 100 cm d) 200 cm

 13. A disk and a sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of the two objects gets to the bottom of the plane first? a) Disk b) Sphere c) Both reach at the same time d) Depends on their masses 14. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in 				
equilibrium	state. The energy requ	ired to rotate it by 60° is	W. Now the torque required to	
keep the m	agnet in their new posit	ion is		
a) $\frac{\sqrt{3w}}{2}$	b) $\frac{2w}{\sqrt{3}}$	c) $\frac{w}{\sqrt{3}}$	d) $\sqrt{3}w$	
15. A carbon re	esistor of (47 ± 4.7) k Ω is	to be marked with rings	of different colours for its	
identificati	on. The colour code seq	uence will be		
a) Yellow	-Violet-Orange-Silver	b) Yellow-Green-	-Violet-Gold	
c) Violet	Yellow-Orange-Silver	d) Green-Orange	e-Violet-Gold	
potential at a	a point (x, 0) will be	ong at x axis. If the poter	itial at the origin is zero, then the	
a) XE	b) 2X	te c) –XE	d) $\frac{-XE}{2}$	
17. Which amo charge?	ng the following will be	the number of electrons	in one coulomb of negative	
a) 6.25 x	b) 62	.5 x 10 ¹⁸ e c) 72.5 x	10 ¹⁷ e d) $6.25 \ge 10^{-18}$ e	
18. The angle of prism is 60 deviation a	f incidence for a ray of 1 ⁰ . If the ray suffers min nd refractive index mate	light at a refracting surfa imum deviation through erial of the prism respect	the prism, the angle of minimum ively are: 1^{1}	
a) 45°, $\frac{1}{\sqrt{2}}$	b) 30º, √2	c) 45º, √2	d) 30°, $\frac{1}{\sqrt{2}}$	
19. In Young's	double slit experiment t	he separation d between	2 slits is 2mm, the wavelength λ	
of the light	used is 5896Å and dista	nce 'D' between the scre	en and slits is 100cm. It is found	
that the ang	gular width of the fringe	s is 0.20°. To increase th	the fringe angular width is 0.21° .	
(with same 2	and D) the separation	between the slits needs	to be changed to	
a) 1.9mr	n b) 1.8mm	c) 2.1mm	d) 1.7mm	
20. What is the	that it can complete th	e loop?	n must enter a velocity loop of	
$\frac{1}{\alpha}$	b) $\sqrt{2gR}$	$\frac{1}{2aB}$	d) $\sqrt{5 \alpha R}$	
21 A long wire	$0 \sqrt{2gR}$	$C_{J} \sqrt{SgR}$	$\sqrt{\sqrt{9}}$	
field at the	centre of the loop is B.	It is then bent into a circular coil of n turns will be	cular coil of 'n' turns. The	
a) 2nB	b) n ² B	c) nB	 d) 2n ² B	
22. An electron	is moving in a circular	path under the influence	e of a transverse magnetic field of	
3.57 x 10 ^{-2'}	Γ . If the value of e/m is	$1.76 \times 10^{11} \text{ c/kg}$, the freq	uency of revolution of the electron	
a) 62 8 M	 /Hz b) 6.28 MHz	c) 100 MHz	d) 1 GHz	
23. A person ca In order to	in see clearly objects on increase the maximum	ly when they lie between distance of distinct visio	50cm and 400cm from his eyes. n to infinity, the type and power	
of the conn	ecting lens, the person	has to use, will be	·	
a) Conca	ve, -0.2 diopler b) Co	nvex, +0.15 diopler c) (Convex, +2.25 diopler	
24. Electrons o	f mass m with de-brogli length (λ_{0}) of the emitte	e wavelength λ fall on th	e target in an x-ray tube. The	
$2m^2$	$c^2 \lambda^2$	$dx - 1 dy 13 _ 2mc \lambda^2$.	$1 \sim 2h$	
a) $\lambda_0 = \frac{1}{\mu}$	$\frac{1}{2}$ D) $\lambda_0 = \lambda$	C) $\lambda_0 = \frac{h}{h}$	$d) \ \lambda_0 = \frac{1}{mc}$	
25. The ratio of and mean d	escape velocity at earth ensity are twice as that	n (v_e) to the escape veloci of earth is	ty at a planet (v_p) whose radius	
a) 1 : 2	b) $1: 2\sqrt{2}$	c) 1 : 4	d) 1 : $\sqrt{2}$	
26. A given san T. The mas	nple of an ideal gas occu s of each molecule of th	apies a volume v at a pre e gas is m. Which of the	ssure P and absolute temperature following gives the density of a	
gas?		.		
a) $\frac{P}{\mu m \mu}$	b) $\frac{P}{VT}$	c) $\frac{Pm}{KT}$	d) mKT	

a) $\lambda_m > \lambda_x > \lambda_v$

c) $\lambda_v > \lambda_m > \lambda_x$ d) $\lambda_v > \lambda_x > \lambda_m$

44.	Average density of the earth a) a complex function of g d) directly proportional to	is g b) does not indep g.	endent of g	c) inversely j	proportional to g
45.	In an electrical circuit R, L, (removed from the circuit, th	C and AC voltage so e phase difference b	urce are all con etween the volt	nected in se age and curr	ries. When L is cent in the circuit
	is $\frac{\pi}{2}$. Instead if C is removed	then the circuit, the	phase differen	ce is again $\frac{\pi}{2}$. The power factor
	of the circuit is	,	1	0 3	1
	(1) (1) (1) (1)		a) 1	$\sqrt{3}$	
	a) $\frac{1}{2}$ b) $\frac{1}{\sqrt{2}}$			$d = \frac{1}{2}$	
10	1171 · · · · · · · · · · · · · · · · · ·	<u>CHEMIS1</u>	<u>`RY</u>	1	
40.	a) Enzymes are mostly pr c) Enzymes are least reac	oteinous in nature tive at optimum tem	b) Enzyme ac	tion is specif	ĩc
4 🖂	d) Enzymes are denatured	d by uv-rays and at	high temperatu	ire	
47.	Boron has two stable isotope	es, B^{10} (19%) and B^{1}	$^{1}(81\%)$. Calcula	te the average	ge atomic weight
	of boron in the periodic table	b) 10 0	a) 110	d) 10	0
48	a) 10.0 The energy of an electron in	UJ 10.2 the nth Bohr orbit of	CJ 11.2 Chydrogen atom	u) 10.	0
то.	1110 energy of an electron in	$(10^{-13.6})^{-13.6}$	-13.6	-13.	6
10	a) $\frac{1}{n^4}$ ev	$D \int \frac{1}{n^3} ev$	$c) - \frac{1}{n^2} ev$	$a) - \frac{n}{n}$	-ev
49.	If r is the radius of the first o	orbit, the radius of r	r^{th} orbit of H-ato	om is given t)y
	a) m	b) rn^2	c) $\frac{1}{n}$	d) r²n	2
50.4	Among the following compou	nd one that is most	reactive toward	ls electrophil	ic nitration is
	a) benzoic acid	b) nitrobenze ne	c) toluene	d) ber	nzene
51.	The number of possible isom	hers of the compoun	d with molecula	ar formula C	₇ H ₈ O is
52.	How many primary, seconda hydrocarbon CH ₃ -CH(CH ₃)-C a) Primary-2, secondary-6	b) 5 ry, tertiary and qua $C(CH_3)_2$ - CH_2 - $CH(CH_3)_2$ 5, tertiary-3, quaterr	ternary carbon)-CH ₂ -CH ₃ nary-0	s are presen	t in the following
	b) Primary-6, secondary-2	2, tertiary-2, quateri	nary-1		
	c) Primary-2, secondary-4	l, tertiary-3, quaterr	nary-2		
	d) Primary-2, secondary-2	2, tertiary-4, quateri	nary-3		
53.	Which of the following is par	amagnetic?	-		
	a) CO	b) CN-	c) 0^{-}_{2}	d) NO	+
54.	If molality of the dilute solut a) doubled	ion is doubled, the v b) halved	value of molal d	epression co d) une	onstant (K _f) will be changed
55.	The addition of a catalyst du	tring a chemical read	ction alters whi	ch of the foll	owing quantities?
	a) internal energy	b) enthalpy	c) Activation e	energy d) e	ntropy
56.	Which one of the following is	s incorrect for ideal s	solution?		
	a) $\Delta H_{mix} = 0$	b) $\Delta U_{mix}=0$	c) $\Delta P = P_{ob}^{-} - P_{ca}$	alculated = 0	d) $\Delta G_{mix} = 0$
57.	Blood cells retain their norm	al shape in solution	s which are		
	a) isotonic to blood	b) hypotonic to blo	od		
-	c) hypertonic to blood	d) equinormal to b	lood		
58.	An element, x has the follow	ing isotopic compos	ition: x^{200} :90%,	x ¹⁹⁹ :8.0%, x	202:2.0%
	The weighed average atomic	mass of the natural	ly occurring ele	ement x 18 cl	Disest to
50	a) 201 u Nylon is on example for	b) 200 u	c) 202	u	aj 199 u
59.	a) Polvester	h) Polysaccharide	c) Poly	amide	d) Polythene
60.	In graphite, electrons are	by i orystaeentariae	0) 1 019		a) i oly mene
•	a) localized on each c-ato	m b) loc	alized on everv	third c-aton	n
	c) spread out between the	e structures d) bo	th (b) and (c)		
61.	Liquid hydrocarbons can be a) oxidation b) cracking	converted to a mixt c_{1}	ure of gaseous	hydrocarbon pressure d)	s by hydrolysis
		<i>c c c c c c c c c c</i>			5 5

62. The correct order of atomic radii in group 13 elements is b) B < Ga < Al < Tl < Ina) B < Al < In < Ga < Tlc) B < Al < Ga < In < Tl d) B < Ga < Al < In < Tl 63. The sequence of ionic mobility in aqueous solution is a) K+>Na+>Rb+>cs+ b) cs+>Rb+>K+>Na+ c) Rb+>K+>cs+>Na+ d) Na+>K+>Rb+>cs+ 64. Which one of the following is used to make non-stick cookware? b) Polystyrene c) Polyethylene terephthalate d) Polytetrafluoro ethylene a) PVC 65. The most stable configuration of n-butane will be a) Skew boat b) eclipsed c) gauche d) staggered-anti 66. Reactivity of hydrogen atoms attached to different carbon atoms in alkanes has the order a) tertiary > primary > secondary b) primary > secondary > tertiary d) tertiary > secondary > primary c) Both (a) and (b) 67. Be²⁺ is iso electronic with which of the following ions? b) Mg²⁺ c) H+ a) Na+ d) Li+ 68. Carbon-14 dating method is based on the fact that a) c-14 fraction is same in all objects b) carbon-14 is highly insoluble c) ratio of c-14 and c-12 is constant d) all of these 69. According to Raoult's law relative lowering of vapour pressure of a solution is equal to a) Molarity b) Molality c) Formality d) Normality 70. If the equilibrium constant for $\frac{1}{2} N_{2(g)} + \frac{1}{2} O_{2(g)} \rightleftharpoons NO_{(g)}$ will be c) $K^{\frac{1}{2}}$ a) $\frac{1}{2}$ K b) K d) K² 71. Correct gas equation is b) $\frac{P_1T_1}{V_1} = \frac{P_2V_2}{T_2}$ c) $\frac{V_1V_2}{T_1T_2} = P_1P_2$ d) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$ a) $\frac{V_1T_2}{P_1} = \frac{V_2T_1}{P_2}$ 72. According to Le-chatlier's principle, adding heat to a solid \rightleftharpoons liquid equilibrium will cause the a) temperature to increase b) temperature to decrease c) amount of solid to decrease d) amount of liquid to decrease 73. The number of geometrical isomers for $[Pt(NH_3)_2Cl_2]$ is a) 3 d) 2 b) 4 c) 1 74. Trichloroacetaldehyde, ccl₃CHO reacts with chlorobenzene in the presence of Sulphuric acid and produces

Codes:

d)
$$cl - \underbrace{\circ}_{cl}^{OH} - \underbrace{cl}_{cl}^{OH} - cl$$

75. The pair of electron in the given carbanion, $CH_3C\equiv C^-$, is present in which orbitals?

a) sp b)
$$2p$$
 c) sp^3 d) sp^2

76. Match column I with column II and assign the correct code.

Column-I	Column-II	А	В	С	D
A. Cyanide process	1. Ultra pure Ge	a) 2	3	1	5
B. Froth floatation process	2. Dressing of ZnS	b) 1	2	3	4
C. Electrolytic reduction	3. Extraction of Al	c) 4	2	3	1
D. Zone refining	4. Extraction of Au	d) 3	4	5	1
	5. Purification of Ni				
Λ	· 1		1.	1.1	

77. Among the element with following electronic configuration, which one may have the highest ionisation energy?
a) [Ne]3s²3p²
b) [Ar]3d¹⁰4s²4p³
c) [Ne]3s²3p³
d) [Ne]3s²3p¹

78.	For the ideal phase reaction	$Pcl_{5(g)} \rightleftharpoons Pcl_{3(g)}$	+ $cl_{2(g)}$			
	Which of the following condi	tions are corr	ect?			
	a) Δ H=0 and Δ S<0 b) Δ H	<0 and Δ S<0	c) ∆H>	>0 and Δ S<0)	d) Δ H>0 and Δ S>0
79.	During osmosis, flow of wate	er through a s	emiper	meable men	nbrane is	3
	a) from solution having h	igher concent	tration	only		
	b) from both sides of sem	i permeable n	nembra	ne with equ	al flow ra	ates
	c) from both sides of semi	i permeable m	lembra	ne with une	qual flow	v rates
	d) from solution having lo	wer concentra	ation of	nly		
80.	For the first order reaction,	the half life pe	eriod is	independen	t of	
	a) cube root of initial cone	centration	b) firs	t power of in	nitial con	centration
	c) square root of initial co	ncentration	d) init	ial concentr	ation	
81.	The central dogma of molecu	lar genetics s	states tl	nat the gene	tic inform	mation flows from
	a) amino acid \rightarrow proteins	\rightarrow DNA		b) DNA→Ca	arbohydr	ates→Proteins
	c) DNA →RNA→Proteins			d) DNA→RI	NA→Carb	oohydrates
82.	The functional group which	participates ii	n disulp	phide bond f	formation	n in proteins?
	a) Thiolactone	b) Thiol		c) Thioethe	r	d) Thioester
83.	An example of biopolymer is					
	a) Teflon	b) neoprene		c) nylon-66	5	d) DNA
84.	The helical structure of prot	ein is stabilize	ed by			
	a) dipeptide bonds	b) ether bon	ds	c) hydroger	n bonds	d) peptide bond
85.	Which of the following states	nents about h	nydroge	n is incorre	ct?	
	a) hydrogen never acts as	cation in ion	ic salts			
	b) hydronium ion, H ₃ O ⁺ e	xists freely in	solutio	n		
	c) Dihydrogen does not ac	et as a reducin	ng agen	t		
	d) hydrogen has three iso	topes of whicl	n tritiu	m is the mos	st commo	on
86.	Water gas is produced by					
	a) mixing oxygen and hyd	rogen in the r	ratio of	1:2		
	b) heating mixture of CO ₂	and CH ₄ in p	etroleu	m refineries	5	
	c) passing steam through	a red hot cok	te bed			
	d) saturating hydrogen wi	ith moisture				
87.	Which of the following ions v	vill exhibit col	lour in	aqueous sol	utions?	
	a) Lu ³⁺ (z=71)	b) Sc ³⁺ (z=21))	c) La ³⁺ (z=5'	7)	d) Ti ³⁺ (z=22)
88.	Which of the compounds ha	s the lowest b	oiling p	ooint?		
	a) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	b) CH	[₃ -CH ₂ -(CH_2 - CH_3	c) CH ₃ -0	$CH=CH-CH_2-CH_3$
	d) CH ₃ -CH=CH-CH=CH ₂					
89.	Lucas reagent is					
	a) Con.HNO ₃ and anhy.Zr	ncl_2	b) Coi	n.Hcl and ar	hy.Zncl ₂	2
	c) Con.Hcl and hydrous Z	ncl ₂	d) Coi	n.HNO ₃ and	hydrous	Zncl ₂
90.	Suppose the elements x and	y combine to	torm to	wo compour	$a xy_2 a$	nd x_3y_2 .When 0.1 mole
	of xy_2 weighs 10g and 0.05 r	nole of x_3y_2 w	eighs 9	g, the atomi	c weights	s of x and y are
	aj 60, 40	b) 20, 30		cj 40, 30		aj 30, 20

<u>BIO – BOTANY</u>

91. Which of the following is correct	set of micronu	trients for plants?	
a) Mg, Si, Fe, Cu, Ca b) Mg, Fe	, Zn, B, Mn	c) Cu, Fe, Zn, B, Mn	d) Mo, Zn, Cl, Mg, Ca
92. Which of the following formula d	escribes N ₂ fixa	ation?	
a) $N_2 + 3H_2 \rightarrow 2NH_3$	b) 2	$NH_3 \rightarrow N_2 + 3H_2$	
c) $2NH_4^{4^+} + 2O_2 + 8e^- \rightarrow N_2 + 4R_2^{-1}$	I_2O d) 2	N_2 + glucose $\rightarrow 2$ amin	oacids
93. The exclusive constituents of ch	lorophvll molec	cules are	
a) Fe ands b)	N ands	c) d) Mg & N	d) Mg and s
94. Deficiency of chlorine in plant ca	uses		
a) stunted growth b)	wilting	c) necrosis	d) all of these
95. Anemophily type of pollination is	s found in		
a) Salvia b)	bottle brush	c) vallisnaria	d) coconut
96. Male gametes in angiosperms ar	e formed by the	e division of	
a) generactive cell b) vegetat	ive cell c) m	icrospore mother cell	d) microspore
97. Manganese is required in			
a) plant cell wall formation		b) Chlorophy	'll synthesis
c) Photolysis of water during	ohotosynthesis	d) Nucleic ac	id synthesis
98. Nitrogen fixation in root nodules	of sinus is bro	hight about by	
a) Azorihizobium b)	Frankia	c) Brudvrhizobium	 d) clostridium
99. Who proposed chemisomotic the	orv?	•) == ••••j ==== • •••••	,
a) Hatch & Slack b)	Calvin	c) Arnon	d) Peter Mitchell
100. RUBISCO is an enzyme for		-,	
a) Photorespiration	 b) C	o_2 fixation in dark read	ction
c) Regeneration of RUBP	d) P	hotolysis of water	
101. The CO_2 is evolved in the follow	ving reaction of	TCA cvcle.	
a) Citric acid $\rightarrow \alpha$ Ketoglutara	te b) S	uccinate \rightarrow Malate	
c) α Keto glutarate \rightarrow Succiny	$v1 \cos A$ d) M	Ialate \rightarrow Oxalo acetate	
102. The requirement of assimilator	v power to fix 6	molecules of Co_2 is	
a) 6ATP 6NADPH b) 12ATH	9 18NADPH	c) 18STP 18 NADD	H d) 18ATP 12NADPH
103. Largest amount of phosphate b	ond energy is p	produced during	•
a) glycolysis b)	TCA cycle	c) fermentation	d) anaerobic respiration
104. In MEsophyll of C_4 plant cells v	which of the foll	lowing cycle takes plac	es
a) C_1 b)	C ₃	c) C_2	d) C_4
105. In C_4 plants C_{0_2} combines with	•	, -	, ,
a) Phospho glycerol denyde	b) P	hosphoglycericacid	
c) Phosphoenol pyruvate	d) R	ibulose diphosphate	
106. Who first demonstrated that lig	tht absorption 1	by chloroplast releases	$0_2?$
a) Blackmann b) Englen	nan	c) Hill	d) Ingenhousz
107. In glycolysis, formation of ATP	during the read	ctions 1,3 Bisphosphos	glycericacid $\rightarrow 3$
phosphoglyceicacid and PEP \rightarrow	Pyruvate is		
a) respiratory phosphorylation	n	b) oxidative phosph	orylation
c) chemical phosphorylastren		d) substrate level pl	hosphorylation
108. R-Q is infinite in		, 1	1
a) anaerobic respiration b)	aerobic respira	ation c) Carbohydr	rate d) None of these
109. How many ATP is produced wh	en FADH ₂ ENTH	ERS etc.,	,
a) 1 b)	3	c) 2	d) 4
110. In photorespiration, glycerine e	nters from	•	,
a) chloroplast to peroxisome		b) mitochondrion to	peroxisome
c) chloroplast to mitochondrid	on	d) peroxisome to mi	tochondrion
111. Acetylco-A is produced from py	ruvate by	· - ·	
a) photorespiration	-	b) oxidative decarbo	oxylation
c) oxidative photophosphoryla	ation	d) oxidative hydroge	enation

112. During movement electric	ron through DTC			
a) electrons are	transported by active	e transport	b) electrons	are resonated
c) P^H of Matrix	increase		d) electrons	show florescence
113. The poly embryony com	monly occurs in	·		
a) tomato	b) potato	c) turmeric		d) citrus
114. Which one of the follow:	ing is a free living obli	gate anaerobic l	bacteria?	
a) Clostridium b)	Rhodo Spirillum	c) Azotobact	er d) Ba	acillus Subtilis
115. Manganese is essential	for			
a) Photolysis of water	b) Formation of s	spindle c) rate	e in closure c	of stomata
d) Maintains ribosome	e structure			
116. Ruminate endosperm is	found in	·		
a) Cruci ferae	b) Asteraceae	c) Euphorbia	aceae	d) Annonaceae
117. Last electron acceptor is	n respiration is	·		
a) H_2	b) <i>O</i> ₂	c) <i>Co</i> ₂		d) NADH
118 breaks the do	rmancy of potato tube	er.		
a) IAA	b) ABA	c) Zeatin		d) Gibberlin
119. Select the wrong statem	ient			
a) RQ of tripalmitin is	0.7			
b) Glycodysis is also c	alled as EMP Pathway	7		
c) Inter mediate of gly	colysis & TCAcycle is :	malicacid		
d) Fermentation yields	S 2STP Intermodiate is	s Acetylcos		
120. Pyruvate dehydragenas	e action resembles			
a) ZDH	b) α KG DH	c) SD	Н	d) all the three
121. Test cross is a cross in	between hybrid and $_$	·		
a) heterozygous recess	sive b) heterozygous o	dominant c) hor	nozygous rec	essive
d) homozygous domin	ant			
122. Which of the element is	not remobilised in lea	af?		
a) N_2 b)	Phosphorus	c) K ⁺		d) Ca ²⁺
123. Aerobic respiratory path	nway is appropriately	termed as	·	
a) parabolic	b) amphibolic	c) ana	abolic	d) catabolic
124. Vegetative propagation	in pistia occurs by	·		
a) stolon	b) offset	c) rur	iner	d) sucker
125. For synthesis of glucose	e molecule the calvin o	cycle operates fo	r	
a) 2 times	b) 4 times	c) 6 ti	mes	d) 8 times
126. Mention the status of the	ne reaction (A): cy ²⁺ 2e	- cy ³⁺ (A)		
a) oxidised	b) reduced	c) pho	osphorylated	d) hydrated
127. The 680nm P_{680} is react	ion centre of	•		
a) PSI	b) PSII	c) bot	h a & b	d) None of these
128. Stock and Scion are use	ed in			
a) grafting	b) cutting	c) laye	ering d)	Micro propagation
129. Auxin is synthesized in	which part of plant?			
a) nodal	b) Internodal	c) Api	.cal	d) Auxillary
130. Air layering is performe	d incase of	•		
a) Grapevine	b) Gooseberry	c) Jas	mine	d) Litchi
131. Contrivances of self pol	lination are	·		
a) bisexuality	b) homogamy	c) clei	stogamy	d) all of these
132. Palynology is the study	of			
a) palms	b) flowers	c) frui	its	d) pollen grain
133. Primary endosperm Nuc	cleus is formed by the	fusion of	·	
a) 2 polar nuclei + 1 s	ynergid cell nucleus			
b) 2 polar nuclei + 1 n	nale gamete nucleus			
c) 1 polar nucleus + 1	anti podal cell nucleu	us +1synergid ce	ell nucleus	
d) 2 antipodal cell nuc	lei + 1 mole comete n			

c) 1 polar nucleus + 1 anti podal cell nucleus +1syrd) 2 antipodal cell nuclei + 1 male gamete nucleus

134. Under water pollination of	occurs in	_·	
a) Vallisneria	b) Nymphea	c) Zostera	d) Ottelia
135. Leaf Abcission occurs by	·		
a) Auxin	b) Cytokinin	c) Gibberlin	d) Abscisic acid
	BIO-ZOO	<u>LOGY</u>	
136. Which is not an epiderma	al derivative?	\ 	
a) Hair b) r	nammary gland	c) Horns	d) Salivary glands
137. Erythropoietin is secreted	d by JMN when there	e is a	
a) decrease in RBC nun	nber b) I	ncrease in RBC number	r
c) Acute mountain sick	ness d) V	When there is a decreas	e in RBC and AMS
138. Cones and colour percept	tion is due to	·	
a) X-linked recessive ge	ne b) X-linked dor	ninant gene c) Y-linke	ed recessive gene
d) Y-linked dominant ge	ene		
139. X-linked inheritance was	discovered by		
a) Mendel b) Y	lule	c) T.H.Morgan	d) Landsteiner
140. Hypothyroidism in adults	s causes myxodema	which is referred also a	S
a) Turner's Syndrome	b) Gull's disease	c) Grave's disease	d) Cretinism
141. Old age people become si	ck due to the absend	ce of the hormone	·
a) FSH	b) STH	c) LH	d) Thymosin
142. Vasodialation is promote	d by		
a) Zinc b) M	Natriuretic peptide	c) Sulphate	d) Angiotensin-Il
143. Identify the vestigial orga	n in Human.		
a) Kidney b) 1	hymus	c) Appendix	d) Caecum
144. The regulatory substance	e Renin is secreted b	У·	
a) Juxta glomerular app	paratus b) lymph	node c) Muscles	d) wBC
145. Brunner's gland is locate	a in		
a) duodenum	b) small intestine	e c) large intestine	d) Oesophagus
140. Diabetes insipidus is cau	seu by	Image acception of Imagel	
a) Hyposecretion of A		lyper secretion of Insul	111
147 Dedecutes in Powman's	UT U) F	Typosecretion of ADH	
a) holding the glomeral	a p suic play a role in b) i	ncreasing filtration	c) decreasing filtration
d) increasing net filtrati	on pressure	nereasing intration	c) decreasing intration
148 Luteinizing hormone stim	ulates		
a) Thyroid	b) Kidney	c) Para thyroid	d) Levdigcells
149. The apparatus used to re	cord muscle contrac	tion	uj Zoj ulgoolis
a) Polygraph	b) ECG	c) EEG	d) Kymograph
150. Which hormone is respor	sible of parturition?)	a, 1.j
a) Relaxin	b) Progesterone	c) Oxvtocin	d) Oesterogen
151. I band is also called as			.,
a) light band	b) dark band	c) myofibrils	d) H-Zone
152. Select the correct sequen	ce of the following.	, 5	,
a) Rhodopsin bleaching	\rightarrow retinene + energy	y + scotopsin + nerve in	npulse
b) Rhodopsin bleaching	\rightarrow nerve impulse + s	scotopsin + energy + ret	inene
c) Rhodopsin bleaching	\rightarrow retinene + scotop	sin + energy + nerve im	pulse
d) Scotopsin \rightarrow retinene	+ energy + Rhodops	sin bleaching + nerve im	ipulse
153. The term applied to rapid	l heartbeat or pulse	rate is	
a) Brady cardia	b) cardiac cycle	c) palpitation	d) tachycardia
154. Addison's disease is caus	sed by		
a) Hyposecretion of Glu	corticoids		
b) Hypersecretion of Glu	acocorticoids		
c) Hyposecretion of Min	eralocorticoids		
d) Hyposecretion of glue	co corticoids and Mir	neralocorticoids	

155.	Compact man of cells durin	ig enibryogenesis is	called as	
	a) blastula	b) Morula	c) Neurula	d) Gastrula
156.	Which one of the following	animals has two sep	earate circulatory path ways	s? -1) Energy
157	a) Sliake Semilunar valve is found in	b) whate	C) FISH	d) Flog
157.	a) Pight septum	b) Left septum	a) Aarta	d) Veins
150	Histomina is secreted by or	b) Left septum	c) Aorta	
150.	a) Neutron hil	b) Essimentil	a) Distalata	_f d) Decembri
150			c) Platelets	d) Basophil
159.	Antheraea assamensis proc	$1 \text{ suces} _ \text{ suck}$		1)
100	a) Mulberry silk	b) Tussar	cj Muga	d) Eri
160.	Human ovum is	1	\ 	1) A 1 • 1 1
	a) Micro lecithal	b) Mega lecithal	c) Macro lecithal	d) A lecithal
161.	Sertoli cells are found in th	le		
	a) Adrenal cortex and sec	rete adrenaline	to germ cells	
	c) Pancreas and secrete n	ina provide natrition rogesterone	to germ cens	
	d) Ovaries and secrete pro	ogesterone		
162.	Which is referred as endem	nic goitre		
	a) Exopthalmic goitre	b) Cretinism	c) Myxodema	d) Simple goitre
163.	Which one is an accessory	excretory organ?	, ,	, 10
	a) Stomach	b) Testis	c) Liver	d) Heart
164.	ABO blood group system w	as identified by	·	
	a) T.H.Morgan	b) Yule	c) Ransteiner	d) Wiener
165.	A person with blood group	will have a genotype		
	a) I ^o I ^B	b) I ^A I ^A and I ^A I ^B	c) I ^A I ^A and I ^O I ^A	d) I ^A I ^B and I ^O I ^O
166.	GFR of kidney is			
	a) 120 ml/min	b) 115 ml/min	c) 125 ml/min	d) 130 ml/min
167.	The process of filtering the	blood of a damaged	kidney is	, ,
	a) Haemostasis b) Ha	emopoiekionesis	c) osmoregulation	d) Haemodialysis
168.	Meiosis I results in	male.	, 3	, 5
	a) Secondary Oocyte	b) Primary Oocyte	c) Spermatid	d) Sperm
169.	Find out the internal paras	ite.	, 1	/ 1
	a) Ancylostoma	b) Nereis	c) Hirudinaria	d) Aedes
170.	Atpase is the enzyme locate	ad in	-,	
	·1···· · · · · · · · · · · · · · · · ·	zum .		
	a) Myosin	b) Troponin	c) F-Actin	d) G-actin
171.	a) Myosin Which organism is referred	b) Troponin as Living fossil?	c) F-Actin	d) G-actin
171.	a) Myosin Which organism is referred a) King prawn	b) Troponin as Living fossil?	c) F-Actin	d) G-actin d) Crab
171. 172	a) MyosinWhich organism is referreda) King prawnWhich belongs to Aptera?	b) Troponin as Living fossil? b) Limulus	c) F-Actin c) Honey bee	d) G-actin d) Crab
171. 172.	a) MyosinWhich organism is referreda) King prawnWhich belongs to Aptera?a) Beetle	b) Troponin as Living fossil? b) Limulus b) Dragon fly	c) F-Actinc) Honey beec) Silver fish	d) G-actin d) Crab d) Silkworm
171. 172.	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in 	b) Troponin as Living fossil? b) Limulus b) Dragon fly	c) F-Actinc) Honey beec) Silver fish	d) G-actin d) Crab d) Silkworm
171.172.173.	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin 	b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin	c) F-Actinc) Honey beec) Silver fishc) Actin	 d) G-actin d) Crab d) Silkworm d) Keratin
171.172.173.174	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin 	 c) F-Actin c) Honey bee c) Silver fish c) Actin 	 d) G-actin d) Crab d) Silkworm d) Keratin
 171. 172. 173. 174. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin covum how many po 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 2 	 d) G-actin d) Crab d) Silkworm d) Keratin a) 0
 171. 172. 173. 174. 175. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin covum how many po b) 2 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin m? d) 0
 171. 172. 173. 174. 175. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin covum how many po b) 2 l in 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin n? d) 0
 171. 172. 173. 174. 175. 176. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin fovum how many po b) 2 l in b) uriniferous tubu 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin m? d) 0 d) nephron
 171. 172. 173. 174. 175. 176. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin fovum how many po b) 2 l in b) uriniferous tubu bairs of ciliary rosettee 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 e) C) Malphigian capsule 	 d) G-actin d) Crab d) Silkworm d) Keratin n? d) 0 d) nephron
 171. 172. 173. 174. 175. 176. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 	 b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin b) Troponin covum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetted b) 2 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin d) 0 d) nephron d) 19
 171. 172. 173. 174. 175. 176. 177. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 	 b) Troponin b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin b) Troponin covum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetted b) 2 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 ale c) Malphigian capsule b. c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin m? d) 0 d) nephron d) 19
 171. 172. 173. 174. 175. 176. 177. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised by a) Brunner's gland and vi 	 b) Troponin b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin fovum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetted b) 2 lin lin (leaf shape) b) 	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 lle c) Malphigian capsule es. c) 3 	 d) G-actin d) Crab d) Silkworm d) Keratin d) 0 d) nephron d) 19 shaped villi
 171. 172. 173. 174. 175. 176. 177. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised bya) Brunner's gland and vic or peyer's patches & Brunner's gland and vic or peyer's patches and vic or p	b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin fovum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetted b) 2 lli (leaf shape) b) mer's gland d)	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 dle c) Malphigian capsule es. c) 3) Brunner's gland and club) Club shaped villi & peyer's 	 d) G-actin d) Crab d) Silkworm d) Keratin d) 0 d) nephron d) 19 shaped villi s patches
 171. 172. 173. 174. 175. 176. 177. 178. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised by a) Brunner's gland and vic c) Peyer's patches & Brunner's seen in 	b) Troponin b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin fovum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosette b) 2 lli (leaf shape) b) mer's gland d) organisms.	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 lle c) Malphigian capsule es. c) 3) Brunner's gland and club) Club shaped villi & peyer's 	 d) G-actin d) Crab d) Silkworm d) Silkworm d) Keratin d) 0 d) nephron d) 19 shaped villi s patches
 171. 172. 173. 174. 175. 176. 177. 178. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has pression of the second second	b) Troponin b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin forum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetter b) 2 lli (leaf shape) b) mer's gland d) organisms. b) Aphis	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 de c) Malphigian capsule es. c) 3) Brunner's gland and club) Club shaped villi & peyer's c) Starfish 	 d) G-actin d) Crab d) Silkworm d) Silkworm d) Keratin d) 0 d) nephron d) 19 shaped villi s patches d) Cow
 171. 172. 173. 174. 175. 176. 177. 177. 178. 179. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised by a) Brunner's gland and vic c) Peyer's patches & Brunner's gland	b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin for oum how many por b) 2 l in b) uriniferous tubur pairs of ciliary rosetter b) 2 liner's gland d) organisms. b) Aphis	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 lle c) Malphigian capsule es. c) 3) Brunner's gland and club) Club shaped villi & peyer's c) Starfish 	 d) G-actin d) Crab d) Silkworm d) Keratin m? d) 0 d) nephron d) 19 shaped villi s patches d) Cow
 171. 172. 173. 174. 175. 176. 177. 177. 178. 179. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised by a) Brunner's gland and vidits c) Peyer's patches & Brunner's gland and vidits c) Birds Cholecystokinin stimulates a) Gall bladder 	b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin forum how many po b) 2 l in b) uriniferous tubu pairs of ciliary rosetted b) 2 lli (leaf shape) b) ner's gland d) b) Aphis b) Pancreas	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 dle c) Malphigian capsule es. c) 3) Brunner's gland and club) Club shaped villi & peyer's c) Starfish c) Kidney 	 d) G-actin d) Crab d) Silkworm d) Silkworm d) Keratin d) 0 d) nephron d) 19 shaped villi s patches d) Cow d) Liver
 171. 172. 173. 174. 175. 176. 177. 177. 178. 179. 180. 	 a) Myosin Which organism is referred a) King prawn Which belongs to Aptera? a) Beetle Which protein is globular in a) Myosin If there is no fertilization of a) 1 Bowman's capsule is found a) glomerulus Earthworm has p a) 1 Ileum is characterised by a) 1 Ileum is characterised by a) 1 Ileum is characterised by a) Brunner's gland and vic c) Peyer's patches & Brunner's gl	b) Troponin as Living fossil? b) Limulus b) Dragon fly n nature? b) Troponin forum how many po b) 2 l in b) uriniferous tubus pairs of ciliary rosetter b) 2 lli (leaf shape) mer's gland b) Aphis b) Pancreas ed to the digestion of	 c) F-Actin c) Honey bee c) Silver fish c) Actin lar body is formed in woma c) 3 de c) Malphigian capsule es. c) 3 e) Brunner's gland and club b) Club shaped villi & peyer's c) Starfish c) Kidney f 	 d) G-actin d) Crab d) Silkworm d) Keratin n? d) 0 d) nephron d) 19 shaped villi s patches d) Cow d) Liver

MATHEMATICS

91. Circle(s) touching x-axis	at a distar	nce 3 from	the origin an	d having a	an intercept of length $2\sqrt{7}$
on y-axis is (are)					
a) x ² +y ² -6x+7y+9=0	b) x ² +y ² -6	6x-8y+9=0	c) x ² +y ² -6	x+8y+9=0	d) x ² +y ² -6x-7y+9=0
92. If α and β are the roots of	of the equa	tion x^2-x+2	1=0, then α^{200}	$\beta^{09} + \beta^{2009} =$	
a) -2 b)	-1	c)	2	d) ∞	
93. Consider the system of li	inear equa	tion x_1+2x_2	$_{2}+x_{3}=3; 2x_{1}+3$	$3x_2+x_3=3; 3$	$3x_1+5x_2+2x_3=1$. The
system has					
a) infinite number of s d) no solution	solutions	b)	exactly 3 sol	utions	c) a unique solution
94. Volume of parallelepiped	determine	ed by vecto	ors \vec{a} , \vec{b} and \vec{c}	is 5. Then	the volume of
parallelepiped determine	d by vecto	ors $3(\vec{a}+\vec{b})$ (\vec{b} + \vec{c}) and 2(\vec{c} +	<i>ā</i>) is	
a) 24 b)	100	c)	30	d) 60	
95. Area of triangle with adja	acent sides	s determine	ed by vectors	\vec{a} and \vec{b} is	20. Then the area of
the triangle with adjacer	nt sides de	termined b	v vectors $(2\vec{a})$	$+3\vec{b}$) and	$\vec{a} \cdot \vec{h}$ is
a) 24 b)	100	c)	60	d) 30	<i>~~</i>
96 Let ABC be a triangle su	ch that 🖉	$CB = \frac{\pi}{2}$ and 1	leta hand c	denote th	e lengths of the sides
opposite to A, B and C re (are)	espectively	The value f_6	es of x for wh	ich a=x ² +x	$x+1$, $b=x^2-1$ and $c=2x+1$ is
a) $-(2+\sqrt{3})$ b)	$2 + \sqrt{3}$	c)	$4\sqrt{3}$	d) 1+	$\sqrt{3}$
97. The value of $\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx$: is				
a) $\frac{2}{105}$ b)	0	c)	$\frac{22}{7} - \pi$	d) $\frac{71}{15}$	$-\frac{3\pi}{2}$
98. Let ω be a complex cube	root of un	ity with ω	$\neq 1$ and P=(P _{ij}	j) be a n×n	matrix with $P_{ij} = \omega^{i+j}$.
Then P²≠0, when n=	·				
a) 55, 57, 58 b)	55, 56, 5	7 c)	55, 56, 58	d) 56	, 57, 58
99. Two lines L ₁ :x=5, $\frac{y}{3-\alpha} = \frac{z}{-2}$	and L ₂ =x=	$\alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$	are coplanar	Then α c	an take values
a) 1, 2 b)	2,4	c)	1,4	d) 3,	2
100. Area of parallelogram w	vith adjace	nt sides de	etermined by	vectors \vec{a} a	and \vec{b} is 30. Then the
area of the parallelogra	m with ad	jacent side	s determinin	g by vector	cs $(\vec{a}+\vec{b})$ and \vec{a} is
a) 30 b)	100	c)	60	d) 24	
101. Consider the lines $L_1: \frac{x}{x}$	$\frac{-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$	L ₂ : $\frac{x-4}{1} = \frac{y+3}{1}$	$=\frac{z+3}{2}$ and the	planes P ₁ :	7x+y+2z=3,
P ₂ =3x+5y-6z=4. Let ax+ intersection of lines L ₁ List-II	by+cz=d b and L ₂ and	e the equa l perpendic	tion of the pl cular to plane	ane passir es P1 and F	ng through the point of P_2 Match List-I with
select the correct answ	wer using	the code gi	iven below th	e lists.	
	Р	List I a=	List II 1, 13	РQ a)13	к 5 4 2
	Q	b=	23	b) 3 2	4 1
	R	C=	3.1	c) 3 2	1 4
	S	d=	42	d) 2 4	1 3
102. Volume of parallelepipe	d determin	ned by vec	tors \vec{a} , b and	\vec{c} is 2. The	n the volume of

parallelepiped determined by vectors $2(\vec{a} \times \vec{b}) \cdot 3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is ______. a) 100 b) 24 c) 30 d) 60

103. $\left\{\frac{1}{y^2}\right\}$	$\frac{\cos(\tan^{-1}y) + y \sin(4ta)}{\cot(\sin^{-1}y) + \tan(4s)}$	$\left(\frac{2\pi^{-1}y}{x^{-1}y}\right)^{2} + y^{4} \bigg\}^{\frac{1}{2}}$ takes y	value		
a)	1	b) √2	c) $\frac{1}{2}\sqrt{\frac{5}{3}}$	d) $\frac{1}{2}$	
104. Equa	ation of the plan	e containing the stra	aight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and	d perpendicular to the plane	
cont	aining the straig	ght lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and	$\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is		
a) :	x+2y-2z=0	b) 3x+2y-2z=0	c) 5x+2y-4z=0	d) x-2y+z=0	
105. If co	$t (\sin^{-1}\sqrt{1-x^2}) =$	= sin(tan ⁻¹ (x√6)), x≠0	, then possible value	e of x is	
a)	1	b) $\frac{1}{2}$	c) $\sqrt{2}$	d) $\frac{1}{2}\sqrt{\frac{5}{3}}$	
106. Let H x-az	P(6,3) be a point kis at (9, 0), ther	t on the hyperbola $\frac{x^2}{a^2}$ n the eccentricity of t	$\frac{y^2}{b^2} = 1$. If the normal the hyperbola is	ll at the point P intersects the 	
a)	$\int_{\frac{5}{2}}$	b) $\sqrt{\frac{3}{2}}$	c) $\sqrt{2}$	d) √3	
107. If co	s x+cos y +cos z	=0=sin x+sin y+sin z	then possible value	of $\cos\left(\frac{x-y}{2}\right)$ is	
a)	1	b) $\frac{1}{2}$	c) $\sqrt{2}$	d) $\frac{1}{2}\sqrt{\frac{5}{3}}$	
108. The	number of 3x3 1	matrices A whose en	tries are either 0 or	1 and for which the system	
$A\begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$=\begin{pmatrix}1\\0\\0\end{pmatrix}$ has exact	etly two distinct solu	tions is		
a) 2	29-1	b) 168	c) 0	d) 2	
109. If <i>å</i> a	and \vec{b} are vectors	s in space given by \vec{a}	$\vec{k} = \frac{i-2j}{\sqrt{5}}$ and $\vec{b} = \frac{2i+j+3k}{\sqrt{14}}$ the	hen the value of	
(2 <i>ā</i> +	\vec{b}).[($\vec{a} \times \vec{b}$)×(\vec{a} -2 \vec{b}	<i>,</i>			
a) -	-25	b) 25	c) -5	d) 5	
110. If the deno expre	e angles A, B an te the lengths of ession $\frac{a}{c} \sin 2c$ +	d C of a triangle are f the sides opposite t $\frac{c}{a}$ sin2A is	in an arithmetic pro o A, B and C respect	ogression and if a, b and c tively, then the value of the	
a)	$\frac{1}{2}$	b) √3	c) 1	d) $\frac{\sqrt{3}}{2}$	
111. Let and	be a complex or r_3 are the numb	cube root of unity with pers obtained on the	th $\omega \neq 1$. A fair dice i die, then the probab	s thrown three times. If r_1 , r_2 pility that $\omega^{r_1} + \omega^{r_2} + \omega^{r_3} = 0$ is	
a) -	<u>1</u> 18	b) $\frac{1}{9}$	c) $\frac{2}{9}$	d) $\frac{1}{36}$	
112. Let I	E and F be two i	ndependent events. '	The probability that	exactly one of them occurs is $\frac{11}{25}$	
and the probability of none of them occurring is $\frac{2}{25}$. If P(T) denotes the probability of					
occur a)]	$P(E) = \frac{4}{5}, P(F) = \frac{3}{5}$	nt 1, then, b) $P(E) = \frac{1}{5}$, $P(F) = \frac{2}{5}$	c) $P(E) = \frac{2}{5}$, $P(F) = \frac{1}{5}$	d) $P(E) = \frac{3}{5}$, $P(F) = \frac{4}{5}$	
113. The line 2x+y=1 is the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. If this line passes through the point					
of in	tersection of the	e nearest directrix ar	nd the x-axis then th	e eccentricity of the hyperbola	
is		1) 0		1) 6	
a) -	√3 - (θ	b) 2	c) 3	a) √2	
114. Let I	$P = \left\{ \frac{\theta}{\sin\theta - \cos\theta = \sqrt{2}\cos\theta} \right\}$	$\frac{1}{\theta}$ and $Q = \{\frac{1}{\sin\theta + \cos\theta = \sqrt{1-\frac{1}{2}}}\}$	$\frac{1}{2 \sin \theta}$ be two sets. T	hen	
a) 1	P⊂ θ and θ -P≠ φ	b)θ∉P	c) P‡Q	d) PCQ	

115.	If \vec{a} and \vec{b} are vectors	s such that $ \vec{a} + \vec{b} = \sqrt{2}$	$\overline{29}$ and $\vec{a} \times (2\vec{i}+3\vec{j}+4\vec{k})$	$=(2\vec{\imath}+3\vec{\jmath}+4\vec{k})\times\vec{b}$, then a
	possible value of $(\vec{a} + \vec{b})$	\vec{b}).(-7 $\vec{\iota}$ +2 \vec{j} +3 \vec{k}) is	·	
	a) 0	b) 4	c) 8	d) 3
116.	A straight line L thro	ough the point (3, -2) is inclined at an ar	ngle 60° to the line $\sqrt{3}x+y=1$. If
	L also intersects the	x-axis, then the equ	uation of L is	
	a) y-√3x+2+3√3=0	b) y+√3x+2-3√3=0	c) $\sqrt{3y}-x+3+2\sqrt{3}=0$	d) $\sqrt{3y+x-3+2\sqrt{3}=0}$
117.	If the distance betwe	en the plane x-2y+z=	d and the plane cor	taining the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
	and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is $\sqrt{2}$	6, then <i>å</i> is	·	
	a) √6	b) 6	c) 36	d) -36
118.	Let ω be the complex	x number $\cos\frac{2\pi}{3}$ + i si	$n\frac{2\pi}{3}$ then the numbe	r of distinct complex
	numbers z satisfying	$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix}$	$\omega = 0$ is equal to	
	a) 1	b) 2	c) 0	d) 3
119.	Let $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + \vec{j} + \vec{k}$ approjection on \vec{c} is $\frac{1}{\sqrt{3}}$	and $\vec{c} = \vec{i} - \vec{j} - \vec{k}$ be three vis given by	vectors. A vector \vec{v} in	the plane of \vec{a} and \vec{b} , whose
	a) $\vec{\iota}$ -3 \vec{j} +3 \vec{k}	b) c) 3 <i>ī-j</i> +3 <i>k</i>	c) $-3\vec{\imath}-3\vec{\jmath}+\vec{k}$	d) $\vec{\imath}$ +3 $\vec{\jmath}$ -3 \vec{k}
120.	Let α and β be the ro	bots of $x^2-6x-2=0$ with	h $\alpha > \beta$. If $a_n = \alpha^n - \beta^n$ for	or n ≥ 1 then the value of $\frac{a_{10}-2a_8}{2a_8}$
	is .			249
	a) 1	b) 3	c) 2	d) 4
121.	Let M and N be two 3	3x3 non-singular ske	ew symmetric matric	es such that MN=NM. If P ^T
	denotes the transpos	se of P then M^2N^2 (M	^T N) ⁻¹ (MN ⁻¹) ^T is	·
	a) M ²	b) –M ²	c) – N ²	d) MN
122.	If $a_1, a_2, a_3 \dots b$	e in harmonic progr	ession with a1=5 and	l a ₂₀ =25. The least positive
	a) 22	n<0 b) 25	c) 24	d) 23
100		$\begin{pmatrix} 1 & 4 \\ 2 & 4 \end{pmatrix}$	4	
123.	If the adjoint of a 3x3	$\begin{array}{c} 3 \text{ matrix P is } \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$	$\frac{7}{3}$, then the possible	e value(s) of the determinant of
	P is (are)	1.) 0	.) 1	1) 0
124.	a) -1 The equation of a pla	DJ -2 ane passing through	c) 1 the line of intersecti	a) 2 on of the planes x+2y+3z=2
	x-y+z=3 and at a dis	tance $\frac{2}{\pi}$ from the po	int (3, 1, -1) is	
	a) $5x_{-}11x_{+}z_{-}17$	$\sqrt{3}$ h) $\sqrt{2}x + x = 3\sqrt{2} - 1$	c) $x + x + z = \sqrt{3}$	d) $x_{-1}/2x_{-1}/2$
125	A value of b for which	b) $\sqrt{2x} \sqrt{y} = 3\sqrt{2} = 1$	$x_{y'}^{2} = \sqrt{3}$	$u_j x - \sqrt{2}y - 1 - \sqrt{2}$
120.	a) $-\sqrt{2}$	b) $-i\sqrt{3}$	c) $i\sqrt{5}$	d) $\sqrt{2}$
126.	The circle passing th through the point	rough the point (-1,	0) and touching the	y-axis at (0, 2) also passes
	a) $\left(\frac{-3}{2}, 0\right)$	b) $\left(\frac{-5}{2}, 2\right)$	c) $\left(\frac{-3}{2}, \frac{5}{2}\right)$	d) (-4, 0)
127.	Let PQR be a triangle	e of area Δ with a=2,	$b=\frac{7}{2}$ and $c=\frac{5}{2}$ where a	, b and c are the lengths of the
	sides of the triangle	opposite to the angle	es at P, Q and R resp	bectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P} =$
	a) $\frac{3}{4\Delta}$	b) $\left(\frac{3}{4\Delta}\right)^2$	c) $\frac{45}{4\Delta}$	d) $\left(\frac{45}{4\Delta}\right)^2$

128. If P is a 3x3	matrix such that PT=2P+I	where P^{T} is the tr	ranspose of P and I is the 3x3
identity mat	rix then there exists a colu	$x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$\neq \begin{pmatrix} 0\\0\\0 \end{pmatrix}$ such that
a) PX= $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	b) PX=-X	c) PX=2X	d) PX=X
129. If the straig	ht lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{z}{2}$	$\frac{y+1}{2} = \frac{z}{k}$ are coplana	r, then the plane(s) containing there
two lines is	(are)		
a) y+2z=-1	b) y-z=-1	c) y-2z=-1	d) y+z=-1
130. Let $P = \begin{pmatrix} 1 \\ 4 \\ 16 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 4 & 1 \end{pmatrix}$ and I be the identity	/ matrix of order 3	3. If $\theta = (q_{ij})$ is a matrix such that
P ⁵⁰ -Q=I the:	n $\frac{q_{31}+q_{32}}{q_{21}}$ =		
a) 103	b) 201	c) 52	d) 205
131. Let P be the	e image of the point (3, 1, 7	7) with respect to	the plane passing through P and
containing	the straight line $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$ is	3	
a) x+y-3z=	0 b) x-4y+7z=0	c) 2x-y=0	d) 3x+z=0
132. An urn con	tains nine balls of which tl	nree are red, four	are blue and two are green. Three
balls are dr	awn at random without re	placement from tl	he urn. The probability that the three
balls have o	lifferent colours is	·	
a) $\frac{1}{3}$	b) $\frac{2}{7}$	c) $\frac{1}{21}$	d) $\frac{2}{23}$
133. Let $\vec{a} = \vec{i} + \vec{j} + \vec{k}$,	, $\vec{b} = \vec{i} - \vec{j} + \vec{k}$ and $\vec{c} = \vec{i} - \vec{j} - \vec{k}$ be the	nree vectors. A vec	ctor \vec{v} in the plane of \vec{a} and \vec{b} , whose
projection o	on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by,		
a) $\vec{\imath}$ -3 $\vec{\jmath}$ +3 \vec{k} 134. Distance be	b) $-3\vec{\imath}-3\vec{j}-\vec{k}$ etween two parallel planes	c) 3 <i>ĩ-j</i> +3 <i>k</i> 2x+y+2z=8 and 4:	d) $\vec{i}+3\vec{j}-3\vec{k}$ x+2y+4z+5=0 is
a) $\frac{3}{2}$	b) $\frac{7}{2}$	c) $\frac{5}{2}$	d) 9/2
135. If the vector	$\vec{a} = \vec{i} - \vec{j} + 2\vec{k}, \ \vec{b} = 2\vec{i} + 4\vec{j} + \vec{k} \text{ and}$	$\vec{c} = \lambda \vec{i} + \vec{j} + \mu \vec{k}$ are m	nutually orthogonal,
then $(\lambda, \mu)=$			
a) (-3, 2)	b) (2, -3)	c) (-2, 3)	d) (3, -2)
136. For two dat	a sets, each of size 5, the v	variances are give	n to be 4 and 5 and the
correspond	ing means are given to be	2 and 4 respective	ely. The variance of the combined
data set is _			
a) $\frac{5}{2}$	b) $\frac{11}{2}$	с) б	d) $\frac{13}{2}$
137. At present a	a firm is manufacturing 20	000 items. It is est	imated that the rate of change of
production l	Pw.r.t additional number	of workers x is giv	ven by $\frac{dP}{dx} = 100 - 12\sqrt{x}$. If the firm
employs 25	more workers, then the ne	w level of product	tion of items is
a) 2500	b) 3500	c) 3000	d) 4500
138. Let A and B	be two sets containing 2 of	elements and 4 el	ements respectively. The number of
subsets of A	AxB having 3 or more elem	ents is	
a) 220	b) 219	c) 256	d) 211
139. Solution of	the differential equation co	os x dy=y(sin x -y))dx, $0 < x < \frac{\pi}{2}$ is
a) sec x =	(tan x+c)y b) y secx=tar	n x + c c) y tanx=	=sec x+c d) tan x=(sec x+c)y

140. Let $\vec{a}=\vec{j}-\vec{k}$ and $\vec{c}=\vec{\iota}-\vec{j}-\vec{k}$. Then the vector \vec{b} satisfying $\vec{a}\times\vec{b}+\vec{c}=\vec{0}$ and $\vec{a}.\vec{b}=3$ is								
a) - <i>ī</i> + <i>j</i> -2 <i>ī</i>	\vec{k} b) $2\vec{i} - \vec{j} + 2\vec{k}$	c) $\vec{i} - \vec{j} - 2\vec{k}$	d) $\vec{\iota} + \vec{j} - 2\vec{k}$					
141. If the lines $\frac{x}{x}$	$\frac{-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{z}{k}$	$\frac{y-4}{2} = \frac{z-5}{1}$ are coplanar	r, then k can have					
a) any valu	ie b) exactly one	value c) exactly two	o values d) exactly three values					
142. A multiple choice examination has 5 questions. Each question has three alternative								
answers of v	answers of which exactly one is correct. The probability that a student will get 4 or more							
correct answ	vers just by guessing is	·						
a) $\frac{11}{3^5}$	b) $\frac{10}{3^5}$	c) $\frac{17}{3^5}$	d) $\frac{13}{3^5}$					
143. If the vector $\overrightarrow{AB}=3\vec{\imath}+4\vec{k}$ and $\overrightarrow{AC}=5\vec{\imath}-2\vec{\imath}+4\vec{k}$ are the sides of a triangle ABC, then the length								
median thro	ough A is							
a) $\sqrt{18}$	b) √33	c) √72	d) $\sqrt{45}$					
144. If Z is a com	plex number of unit mo	dulus and argument	$t \theta$, then arg $\left(\frac{1+z}{1+z}\right)$ equals					
a) $\frac{\pi}{2} - \theta$	b) – <i>θ</i>	c) <i>θ</i>	d) π - θ					
$(1) \alpha$	3)	0,0						
145. If $P = \begin{pmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{pmatrix}$ is the adjoint of 3x3 matrix and A =4, then α is equal to								
a) 5	b) 4	c) 11	d) 0					
146. The sum of a	first 20 terms of the seq	uence 0.7, 0.77, 0.77	77 is					
a) 7 81 (179 -	-10^{-20}) b) $\frac{7}{9}(99-10^{-20})$	⁰) c) $\frac{7}{81}$ (179 + 10 ⁻	(10) d) $\frac{7}{9}$ (99 + 10 ⁻²⁰)					
147. If the equati	ons x ² +2x+3=0 and ax ² -	+bx+c=0, a,b,c∈R, ha	ve a common root, then a:b:c is					
a) 3 : 2 : 1	b) 1 : 3 : 2	c) 1 : 2 : 3	d) 3 : 1 : 2					
148. The circle pa	assing through (1, -2) ar	nd touching the axis	of x at (3, 0) also passes through					
the point	·							
a) (-5, 2)	b) (5, -2)	c) (2, -5)	d) (-2, 5)					
149. If $\left z - \frac{4}{z}\right = 2$, t	hen the maximum valu	e of $ z $ is equal to						
a) 2	b) √3+1	c) √5+1	d) $2\sqrt{2}$					
 150. Let A be a 2x2 matrix. Statement-1: adj (adjA)=A, Statement-2: adj A = A a) Statement-1 is true; Statement-2 is true. Statement-2 is not a correct explanation for statement I. 								
b) Statement-I is true; statement-2 is true. Statement-2 is a correct explanation for statement-1.								
c) Statement-1 is true; statement-2 is falsed) Statement-1 is false; statement-2 is true								
151. A ray of lighting along $x+\sqrt{3}y=\sqrt{3}$ gets reflected upon reacting x-axis, the equation of the								
reflected ray	' is							
a) y=x+√3	b) y=√3x-√3	c) √3y=x-1	d) $\sqrt{3}y=x-\sqrt{3}$					
152. If x, y, z are in A.P and tan ⁻¹ x, tan ⁻¹ y and tan ⁻¹ z are also in A.P then								
a) 2x=3y=6	b) $x = y = z$	c) 6x=3y=2z	d) 6x=4y=3z					
153. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and having centre								
at (0, 3) is _	·							
а) х²+у²-бу	$x^{+7}=0$ b) $x^{2}+y^{2}-6y^{-3}$	$5=0$ c) $x^2+y^2-6y-7=$	=0 d) $x^2+y^2-6y+5=0$					

154.	54. The x-coordinate of the incentre of the triangle that has the coordinates of midpoints of its sides as $(0, 1)$ $(1, 1)$ and $(1, 0)$ is							
	a) $1+\sqrt{2}$	b) $1 - \sqrt{2}$	c) $2+\sqrt{2}$	d) 2-√2				
155.	The intercepts on x-a	axis made by tangen	ts to the curve y	$r=\int_0^x lt l dt$, x \in R, which are parallel to				
	the line y=2x are equal to							
	a) ±2	b) ±1	c) ±3	d) ±4				
156.	If y=sec(tan ⁻¹ x), then	$\frac{dy}{dx}$ at x=1 is						
	a) $\frac{1}{2}$	b) 1	c) $\frac{1}{\sqrt{2}}$ d)) √2				
157.	57. The area (in square units) bounded by the curves $y=\sqrt{x}$, $2y-x+3=0$, x-axis and lying in the							
	first quadrant is	·						
	a) 36	b) 9	c) 18	d) $\frac{27}{4}$				
158.	Let T_n be the numbe	r of all possible trian	igles formed by j	joining vertices of a n-sided regular				
	polygon. If $T_{n+1}-T_n=1$	0 then the value of r	ı is					
	a) 5	b) 7	c) 10	d) 8				
159.	The area bounded by	y the curves y=cos x	and y=sin x bety	ween the ordinates $x=0$ and $x=\frac{3\pi}{2}$ is				
	a) 4√2-2	b) 4√2+2	c) 4√2-1	d) $4\sqrt{2}+1$				
160.	The expression $\frac{\tan A}{1-\cot A}$	$\frac{1}{A} + \frac{\cot A}{1 - \tan A}$ can be writ	ten as					
	a) sinA cosA +1	b) secA cosecA +1	c) tan A + cot A	A d) sec A + cosec A				
161.	The equation of the	tangent to the curve	$y=x+\frac{4}{x^2}$, that is p	parallel to the x-axis, is				
	a) y=0	b) y=1	c) y=2	d) y=3				
162.	All the students of a	class performed poo	rly in Mathemat	tics. The teacher decided to give				
	grace marks of 10 to	each of the student	s. Which of the	following statistical measures will				
	not change even afte	er the grace marks w	ere given?					
	a) variance	b) mean	c) median	d) mode				
163.	A person is to count	4500 currency notes	s. Let a _n denote	the number of notes he counts in				
	the n^{th} minute. If a_1 =	$a_2 = \dots = a_{10} = 150$ ar	nd a_{10} , a_{11} are in	an A.P with common difference -2,				
	then the time taken	by him to count all 1	notes is	·				
	a) 24 minutes	b) 34 minutes	c) 125 minutes	d) 135 minutes				
164.	A circle S passes thr $x^{2}+y^{2}=1$	ough the point (0, 1)	and is orthogon	hal to the circles $(x-1)^2+y^2=16$ and				
	a) radius of S is 8	b) centre of S is (-7	, 1) c) radius	of S is 7 d) centre of S is (-8, 1)				
165.	The slope of the tang	gent to the curve $(y -$	$(-x^5)^2 = x(1+x^2)$	² at the point (1, 3) is				
	a) 8	b) 7	c) 6	d) 5				
166.	The value of $\int_0^1 4x^3 \left\{ \frac{1}{6} \right\}$	$\frac{d^2}{dx^2}(1-x^2)^5$ is	·					
	a) 10	b) 3	c) 4	d) 2				
167.	If the mean deviation then the d is	n of the numbers 1, 1	1+d, 1+2d,	.1+100d from their mean is 255,				
160	a) 10.1	b) 20.0	c) 10.0	d) 20.2 $(3x)$				
108. Let I: $R \to R$ be a positive increasing function with $\lim_{x \to x} \frac{f(x)}{f(x)} = 1$. Then								
	a) 1	b) $\frac{2}{3}$	c) $\frac{3}{2}$	d) 3				

169.	9. Let P(x) be a function defined on R such that P ¹ (x)=P ¹ (1-x), for all, x \in [0,1], P(0)=1 and P(1)=41. Then $\int_0^1 P(x)dx$ equals						
	a)	b) 21	c) 41	d) 42			
170.	If A, B and C are three	ee sets such that A∩	B=A∩C and A∪B=A∪	C then			
	a) A=B	b) B=C	c) A=C	d) $A \cap B = \varphi$			
171.	Let a, b, c be such th	hat $b(a+c) \neq 0$. If $\begin{vmatrix} a \\ -b \\ c \end{vmatrix}$	$ \begin{array}{cccc} a + 1 & a - 1 \\ b + 1 & b - 1 \\ c - 1 & c + 1 \end{array} + \begin{array}{c} a \\ a \\ (-1) \end{array} $	$\begin{vmatrix} +1 & b+1 & c-1 \\ -1 & b-1 & c+1 \\ 0^{n+2}a & (-1)^{n+1}b & (-1)^nc \end{vmatrix} = 0$			
	then the value of n is	s					
	a) zero	b) any odd integer	c) any even i	nteger d) any integer			
172.	There are two urns.	Urn A has 3 distinct	red balls and urn B	has 9 distinct blue balls. From			
	each urn two balls a	re taken out at rande	om and then transfe	rred to the other. The number			
	of ways in which this	s can be done is					
	a) 3	b) 36	c) 66	d) 108			
173.	Let the line $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z}{5}$	$\frac{2+2}{2}$ lie in the plane x+	$-3y-\alpha z+\alpha=0$. Then (α	, β) equals			
	a) (6, -17)	² b) (5, -15)	c) (-5, 5)	d) (-6, 7)			
174	Let f: $(-1, 1) \rightarrow \mathbb{R}$ be a	differentiable functio	$f(0) = -1$ and $f^1(0) = 1$	Let $g(\mathbf{x}) = [f(2f(\mathbf{x}) + 2)]^2$ Then			
171.	$g_1(0) =$			$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$			
	s (0)	b) -4	c) ()	d) _2			
175	The projection of a w	of the three co	ordinate avis are 6	-3 2 respectively. The			
175.	direction equipes of t	he vector are	orumate axis are 0,	-0, 2 respectively. The			
	6 -3 2	$-6 -3 ^{2}$	·	6 -3 2			
	a) $\frac{3}{7}, \frac{3}{7}, \frac{3}{7}$	b) $\frac{-3}{7}, \frac{-3}{7}, \frac{-3}{7}$	c) 6, -3, 2	d) $\frac{5}{5}, \frac{3}{5}, \frac{2}{5}$			
176.	Let M be a 3x3 matri	ix satisfying $M\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$ \begin{array}{c} -1\\2\\3 \end{array} , \mathbf{M} \begin{pmatrix} 1\\-1\\0 \end{array} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix} $	and $M\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}0\\0\\12\end{pmatrix}$. Then the			
Poor	sum of the diagonal a) 12	entries of M is b) 3 d enswor for the gue	 c) 9	d) 6			
Reau	the following line and	$r^2 v^2$					
Т	he circle $x^2+y^2-8x=0$ a	and hyperbola $\frac{x}{9} - \frac{y}{4} = \frac{1}{2}$	1 intersect at the poi	nts A and B.			
177.	Equation of a commo	on tangent with posi	tive slope to the circl	e as well as to the hyperbola is			
	a) 2x-√5y-20=0	b) 2x-√5y+4=0	c) 3x-4y+8=0	d) 4x-3y+4=0			
Read	l the following line an	d answer for the que	estion (178), (179) an	nd (180)			
	Let a, b and c be th	aree real numbers sa	tisfying (a b c) $\begin{pmatrix} 1 & 9\\ 8 & 2\\ 7 & 3 \end{pmatrix}$	$\binom{7}{7} = (0 \ 0 \ 0)$			
178.	If the point P(a, b, c) 7a+b+c is	with reference to (E)	, lies on the plane 22	x+y+z=1, then the value of			
	a) 0	b) 12	c) 7	d) 6			
179.	Let ω be a solution o	f x ³ -1=0 with Im(ω)>	0. If a=2 with b and	c satisfying (E), then the value			
	of $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c} = $						
	a) -2	b) 2	c) 3	d) -3			
180. Let b=6, with a and c satisfying (E). If α and β are the roots of the quadratic equation							
	ax ² +bx+c=0 then $\sum_{n=1}^{\infty}$	$=0\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^n$ is	·				
	a) 6	b) 7	c) $\frac{6}{7}$	d) ∞			