	Everwin Matric. H	fr. Sec. School	
Std:XII	BIO BOTA	ANY	
	Minimal learni	ng Material	<u>Chemical</u>
.	Ln-5 Plant Tiss	sue Culture	A
Main applicatio	ons of plant tissue cult	ure:	known as
1. Clona	l Propagation of elite v	arieties.	Knop's S
2. Conse	ervation of endangered	plants.	
3. Produ	iction of virus-free plar	nts.	
4. Germ	plasm preservation.		
5. Produ	iction of secondary me	tabolites.	
<u>Gottlieb Haberl</u>	and t Totipotency		Haberlan
Mesophy	yll cells of Lamium pur	pureum Father of tissue	P.R. Whi
1 5	1	culture.	F.C. Stew
Totipotency:			
<u>- iotipotonoj.</u> T	he property of live plar	nt cells when cultured in nutrient	Morel and
medium to give	rise to a complete Ind	ividual plant.	Murasbig
Dedifferentiatio	<u>n:</u>	1	
Т	he Reversion of mature	e cells to the meristematic state	1
leads to the cal	lus formation.		kanta et
Differentiation:			Vamada
	cells become specialized	d in form and function.	Taillaua
Redifferentiatio	<u>n:</u> 1	interesting the state of the 11	Guha an
A	aready differ tiated cell	into another type of cell.	I
Eundomental n	g: Callus — WI.		Vasil and
<u>runuamentai p</u> 1	Explant Isolation		
2	Explant must be mai	ntained in controlled conditions	Carlson:
- Explant	: Tissue from a plant.		
Basic Concepts	of Tissue Culture:		
1	. Totipotency	2. differentiation	
3	. Dedifferentiation	4. Redifferentiation	Melchess
Laboratory Fac	<u>ilities for PTC</u> :		
Washing	g facility, Ovens.		Chilton
P ^H meter	r, autoclave, electronic	balance.	Clinton.
Laminar	air-flow bench.	1 / A ⁺	Horsh et
(HEPA) I	High efficiency particul	ate Air.	1101011 00
ot [22 2	$P_{\rm R}$ Pacificly. Growing explanation $P_{\rm R}$	and moculated into culture tubes.	Techniqu
Asentic conditio	טמי כ, 2+00 ועג,0-10 ווט מיי	ars of thotopheroiaj	_ _
Interprete contantie	<u></u> . nvitro cultures free from	m microbes.	
Cell culture:			
C	Culture of single cells ir	nvitro in a liquid medium.	
Cybrid: Fusion	of cytoplasm of cells of	f different parental sources.	

ally defined medium:

nature medium, where each chemical of this medium is s defined.

Solution

<u>knop s Soluti</u>	<u>011.</u>				
	Calcium Nitrate	-	3.0g		
	Potassium Nitrate	-	1.0g		
	Sucrose	-	50.0g		
	Dibasic potassium phos	phate-	1.0g		
	Deionized water	-	1000.0ml		
<u>Haberlandt</u> -	Proposed concept of tot	ipotency.			
P.R. White -	Developed root cultures used Knop's Solution.				
F.C. Steward	- used coconut water for explants.	r cell prolif	eration of carrot		
Morel and Ma	rtin- Developed virus fre	e Dahlia.			
Murasbige an	d skoog:				
_	Most frequently used m	edium.			
	Formulated tissue cultu	re mediun	1.		
kanta et al:					
	Produced test tube fert	ilization in	flowering plants.		
Yamada et al:					
	produced calli in Trades	cantia refl	exa.		
Guha and Ma	heswari:				
Inviro	production of haploid e	mbryos (ai	nthers of Datura).		
Vasil and Hild	lbrandt:				
	Regenerated tobacco pla	ants.			
Carlson:					
	Obtained protoplast fus	ion betwee	n. Nicotiana glauca.		
	Nicotiana longsdorffi.		_		
	Developed first Inter spe	ecific soma	tic hybrid.		
Melchess and	co-workers:		-		
	Developed Intergenic hy	brid betwe	en Potato and Tomato		
	called pomatio.				
Chilton:					
	Produced transformed t	obacco pla	nts.		
Horsh et al:					
	Developed transgenic to	bacco by A	grobacterium.		
Technique Inv	volved in PTC:				
	1. Sterlization.				
	2. Media preparation.				
	3. Culture condition.				
	4. Induction of Callus.				
	5. Embryogenesis.				
	6. hardening.				

Incubation $(25^{\circ}C)$
Teasing of cells
Protoplasm Obtained
Transfer to 20% Sucrose
Centrifugation
Pure protoplast obtained
Transfer to 20% Sucrose
Centrifugation
Pure protoplast
PEG + ca++ ions
Isolated Protoplast
↓ Incubation Agglutination [fusion] of protoplast: M.S. medium
Tested with fluorescein diacetate for protoplast viability
↓ Incrubation (1000-2000 L use at 25°C)
New cells
n of somatic hybrid cells:
Fusion product of protoplasm
without nucleus [Cybrid]
Followed by Nuclear Fusion
pension culture:
Single cells
liquid

	Micropropagation of Banana:	
Agitation by rotary shaker	Invitro micro propagation	
	(Mrsa sp)	
Seperation of cells		
Production of Secondary Metabolites:	1% Naoci 30min	
\rightarrow Substances not required by the plant for normal	(Sterilization)	
growth.[By products]		
\rightarrow Efficient method for the production of Secondary	M S medium with Benzyl aminopesine, IAA	
metabolites.		
1) Biotransformation.	Kinetin 2.0mg/I NAA	
11) Elicitation.	♦ Root Induction	
111) Immobilization	Polynouse	
Secondary Metabolites:	Chada haves	
Plant source uses	Snade nouse	
Cadaina panayar acmiferrum Analgeria	Conctionuniformity	
Conscion Considum annum Pheumotic poin		
Vincristine Indole Cathoran roseus Anti carcinogenic	Transfer to field	
Ouinine Cinchena officinalis Anti material		
Somatic Embryogenesis:		
<u>Somatic Embryogenesis</u> . Callus tissue - Fmbryo[Fmbryoids]	Advantages of Artificial Seeds:	
Application:	\rightarrow Produced at low cost	
\rightarrow Potential plantlets	Desirable traits	
Production of Synthetic seeds	\rightarrow Easy to test genetype of plants	
\rightarrow Reported in Oryza sativa. Allium sativum.	\rightarrow Can be stored for long time	
	→ Growth is faster	
Synthetic Seeds: Encapsulation of embryoids in agarose gel or Sodium,	Produce Identical plants	
Calcium alginate.	Virus free plants:	
Shoot	Shoot meristem tip culture is used to produce Virus free	
Organogenesis: Callus -> Differentiation	plants.	
Plantlets	Protocol for virus free meristem tip culture	
Root 🖊	Apical meristem	
Application of Plant tissue culture:	Leaf primorida	
Imported hybrids are produced.	\downarrow	
\rightarrow Syn Seeds are produced helps in conservation of	M S medium	
plant biodiversity.	\downarrow	
\rightarrow Disease, Stress resistant, herbicide, heat tolerant	$24 \pm 1^{\circ}C 2400L$	
plants are produced.		
With in a short span of time large number of	Organogenesis	
plantlets are produced.		
Production of Secondary metabolities.	Transfer to field	
Somocional variation Gameto Clonal variation	Germpiasm Conservation:	
Somatic Variation Gametophytic Variation	\rightarrow Conservation of genetic resources	
Found in Leai, Stem, Found in Gametes.	(eg: Pollen, Seeds, Hissues)	
root, tuber.	Also involve gene bank, DNA bank.	

→ Maintenance of biological diversity,foodsecurity Cryopreservation/Cryoconversation(-196°C)

→ Organs, Matrive, enzymes, cells, organelle.

Cryoprotectants —> dimethyl sulphoride, glycerol or sucrose.

IPR: Intellectual Property right

→ Consists of copyrights, parents, trade marks, trade secrets, Publicity rights, moral rights.

 \rightarrow The right of the discover must be protected.

→ IPR is protected by parents, copyrights, trade secrets, designs, geographical indications. Patents:

→Special right to the discover/ inventor given by the government.

→ Inventor rights to use, sell or make his invention.

 \rightarrow Guidance should be obtained from patent attorney.

→ A patent is a personal property

Patent

Grant	Specification	Claim
→ Signed document	single document	Invention to be
→ Filled at patent office	Narrative subject	protected
	matter	

Bio safety and Bio ethics:

→ ELSI[Ethical legal and social Implications] covers the relationship between biotechnology and Society.

 \rightarrow Prevention of large scale loss of biological integrity, focus on ecology, human health.

→ Protect from harmful incidents.

Potential risks and consideration For Safety aspects:

→ Pathogenicity of living organisms

→Tonicity of allergy

→ Antibiotic resistant micro organisms

 \rightarrow Problems associated with the disposal of spent microbial biomass and purification of effluent.

→ Safety associated with contamination, infection,

mutation of strains.

Bio Safety guidelines:

IBSCS →Institutional Bio safety committee →Monitor research

activity

RCGM → Review Committee on Genetic manipulation → monitor risky research activity

GEAC → Genetic Engineering → Permit use of Gmp modification Approved Committee (genetically organism) Bioethics → ELSI(1990)

→ Moral discernment.

 \rightarrow Relates to medical policy.

- → Scope of bioethics related to biotechnology,gene therapy, Cloning, life inspace.
- → Integral part of Human genome project..
- → ELSI used to address the issues raised by genomic research.

Ethical Issues in Genomic Research:

 \rightarrow Potential for genetic discrimination in

→ Genetic testing into practice of clinical medicine.

 \rightarrow Conduct of genetic research with people.

GEAC: Genetic Engineering Appraisal Committee

→ Under ministry of Environment forests, climate

change.

employment.

→ Storage of GMO and hazardous microbes.

--> Release of Genetically engineered organisms including field trials (BRL-I,II) Bio safety Research Level trial- I&II. Future OF Biotechnology:

New scientific Revolution that would change the lives.

with in a short time with the sequencing of human genome and genome of some Important Organisms.